A result on the equivalence problem for deterministicpushdown automata
نویسندگان
چکیده
منابع مشابه
On the Complexity of the Equivalence Problem for Probabilistic Automata
Deciding equivalence of probabilistic automata is a key problem for establishing various behavioural and anonymity properties of probabilistic systems. In recent experiments a randomised equivalence test based on polynomial identity testing outperformed deterministic algorithms. In this paper we show that polynomial identity testing yields efficient algorithms for various generalisations of the...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Equivalence Problem of Multitape Finite Automata
Using a result of B.H. Neumann we extend Eilenberg’s Equality Theorem to a general result which implies that the multiplicity equivalence problem of two (nondeterministic) multitape finite automata is decidable. As a corollary we solve a long standing open problem in automata theory, namely, the equivalence problem for multitape deterministic finite automata. The main theorem states that there ...
متن کاملThe equivalence problem of multidimensional multitape automata
This article considers the equivalence problem of multitape automata with multidimensional tapes, where the motion of the heads is monotone in all directions (no backward motion). It is shown that this problem can be reduced to the equivalence problem of ordinary multitape automata. Some applications of the result are adduced. © 2008 Elsevier Inc. All rights reserved.
متن کاملRevisiting the Equivalence Problem for Finite Multitape Automata
The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhumäki in the early 1990s. Their proof of decidability yields a co-NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1976
ISSN: 0022-0000
DOI: 10.1016/s0022-0000(76)80049-9